Statistical Aspects of Quantum Computing

Yazhen Wang

Department of Statistics
University of Wisconsin-Madison
http://www.stat.wisc.edu/~yzwang

Near-term Applications of Quantum Computing Fermilab, December 6-7, 2017

Outline

- Statistical learning with quantum annealing
- Statistical analysis of quantum computing data

Statistics and Optimization

MLE/M-estimation, Non-parametric smoothing, · · ·

- Stochastic optimization problem: $\min_{\theta} \mathcal{L}(\theta; \mathbf{X}_n) = \frac{1}{n} \sum_{i=1}^{n} \ell(\theta; \mathbf{X}_i)$
- Minimization solution gives an estimator or a classifier.
 Examples: ℓ(θ; X_i) = log pdf; residual square sum / loss + penalty

Statistics and Optimization

MLE/M-estimation, Non-parametric smoothing, · · ·

- Stochastic optimization problem: $\min_{\theta} \mathcal{L}(\theta; \mathbf{X}_n) = \frac{1}{n} \sum_{i=1}^{n} \ell(\theta; \mathbf{X}_i)$
- Minimization solution gives an estimator or a classifier. Examples : $\ell(\theta; X_i) = \log pdf$; residual square sum / loss + penalty

Take
$$g(\theta) = E[\mathcal{L}(\theta; \mathbf{X}_n)] = E[\ell(\theta; X_1)]$$

- Optimization problem: $\min_{\theta} g(\theta)$
- Minimization solution defines a true parameter value.

3/40

Statistics and Optimization

MLE/M-estimation, Non-parametric smoothing, ...

- Stochastic optimization problem: $\min_{\theta} \mathcal{L}(\theta; \mathbf{X}_n) = \frac{1}{n} \sum_{i=1}^{n} \ell(\theta; \mathbf{X}_i)$
- Minimization solution gives an estimator or a classifier. Examples : $\ell(\theta; X_i) = \log pdf$; residual square sum / loss + penalty

Take
$$g(\theta) = E[\mathcal{L}(\theta; \mathbf{X}_n)] = E[\ell(\theta; X_1)]$$

- Optimization problem: $\min_{a} g(\theta)$
- Minimization solution defines a true parameter value.

Goals: Use data \mathbf{X}_n to do the following

Yazhen (at UW-Madison)

- (i) Evaluate estimators/classifiers (minimization solutions) Computing
- (ii) Statistical study of estimators/classifiers Inference

3/40

Computer Power Demand

Computer Power Demand

Computer Power Demand

BIG DATA

Scientific Studies and Computational Applications

◆□▶ ◆圖▶ ◆臺▶ ◆臺▶

Machine learning and compressed sensing

• Matrix completion, matrix factorization, tensor decomposition, phase retrieval, neural network.

Machine learning and compressed sensing

• Matrix completion, matrix factorization, tensor decomposition, phase retrieval, neural network.

Machine learning and compressed sensing

• Matrix completion, matrix factorization, tensor decomposition, phase retrieval, neural network.

Machine learning and compressed sensing

• Matrix completion, matrix factorization, tensor decomposition, phase retrieval, neural network.

Neural network: Layers in a chain structure

Each layer is a function of the layer preceded it. Layer j: $h_j = g_j(a_jh_{j-1} + b_j)$, $(a_j, b_j) =$ weights, $g_j =$ activation function (sigmoid, softmax or rectifier)

History

Dog vs cat

Gradient descent algorithm

• Start at initial value x_0 , $x_k = x_{k-1} - \delta \nabla g(x_{k-1})$, $\delta = \text{learning rate}$, $\nabla = \text{derivative operator}$

Gradient descent algorithm

• Start at initial value x_0 , $x_k = x_{k-1} - \delta \nabla g(x_{k-1})$, $\delta = \text{learning rate}$, $\nabla = \text{derivative operator}$

Accelerated Gradient descent algorithm (Nesterov)

• Start at initial values x_0 and $y_0 = x_0$, $x_k = y_{k-1} - \delta \nabla g(y_{k-1}), \qquad y_k = x_k + \frac{k-1}{k+2}(x_k - x_{k-1})$

<□ > <□ > <□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Gradient descent algorithm

• Start at initial value x_0 , $x_k = x_{k-1} - \delta \nabla g(x_{k-1})$, $\delta = \text{learning rate}$, $\nabla = \text{derivative operator}$

Continuous curve X_t to approximate discrete $\{x_k : k \ge 0\}$

Differential equation:
$$\dot{X}_t + \nabla g(X_t) = 0$$
, $\dot{X}_t = \text{derivative} = \frac{dX_t}{dt}$

Accelerated Gradient descent algorithm (Nesterov)

• Start at initial values x_0 and $y_0 = x_0$, $x_k = y_{k-1} - \delta \nabla g(y_{k-1}), \qquad y_k = x_k + \frac{k-1}{k+2}(x_k - x_{k-1})$

Gradient descent algorithm

• Start at initial value x_0 , $x_k = x_{k-1} - \delta \nabla g(x_{k-1}), \ \delta = \text{learning rate}, \ \nabla = \text{derivative operator}$

Continuous curve X_t to approximate discrete $\{x_k : k \ge 0\}$

Differential equation:
$$\dot{X}_t + \nabla g(X_t) = 0$$
, $\dot{X}_t = \text{derivative} = \frac{dX_t}{dt}$

Accelerated Gradient descent algorithm (Nesterov)

• Start at initial values x_0 and $y_0 = x_0$, $x_k = y_{k-1} - \delta \nabla g(y_{k-1}), \qquad y_k = x_k + \frac{k-1}{k+2}(x_k - x_{k-1})$

Continuous curve X_t to approximate discrete $\{x_k : k \ge 0\}$

Differential equation: $\ddot{X}_t + \frac{3}{t}\dot{X}_t + \nabla g(X_t) = 0, \qquad \ddot{X}_t = \frac{d^2X_t}{dt^2}$

Yazhen (at UW-Madison)

6/40

Gradient descent algorithm

• Start at initial value x_0 , $x_k = x_{k-1} - \delta \nabla g(x_{k-1})$, $\delta = \text{learning rate}$, $\nabla = \text{derivative operator}$

Continuous curve X_t to approximate discrete $\{x_k : k \ge 0\}$

Differential equation: $\dot{X}_t + \nabla g(X_t) = 0$, $\dot{X}_t = \text{derivative} = \frac{dX_t}{dt}$

Convergence to the minimization solution at rate= 1/k or 1/t (\uparrow)

as $t, k \to \infty$. For the ccelerated case: Rate = $1/k^2$ or $1/t^2(\downarrow)$

Accelerated Gradient descent algorithm (Nesterov)

• Start at initial values x_0 and $y_0 = x_0$, $x_k = y_{k-1} - \delta \nabla g(y_{k-1}), \qquad y_k = x_k + \frac{k-1}{k+2}(x_k - x_{k-1})$

Continuous curve X_t to approximate discrete $\{x_k : k \ge 0\}$

Differential equation: $\ddot{X}_t + \frac{3}{t}\dot{X}_t + \nabla g(X_t) = 0, \qquad \ddot{X}_t = \frac{d^2X_t}{dt^2}$

Stochastic optimization: $\min_{\theta} \mathcal{L}(\theta; \mathbf{X}_n), \mathbf{X}_n = (X_1, \cdots, X_n)$

 \bullet Gradient descent algorithm to compute x_k iteratively

$$x_k = x_{k-1} - \delta \nabla \mathcal{L}(x_{k-1}; \mathbf{X}_n), \ \nabla \mathcal{L}(\theta; \mathbf{X}_n) = \frac{1}{n} \sum_{i=1}^n \nabla \ell(\theta; \mathbf{X}_i)$$

Stochastic optimization: $\min_{\theta} \mathcal{L}(\theta; \mathbf{X}_n), \mathbf{X}_n = (X_1, \cdots, X_n)$

Gradient descent algorithm to compute x_k iteratively

$$\mathbf{x}_k = \mathbf{x}_{k-1} - \delta \nabla \mathcal{L}(\mathbf{x}_{k-1}; \mathbf{X}_n), \ \nabla \mathcal{L}(\theta; \mathbf{X}_n) = \frac{1}{n} \sum_{i=1}^n \nabla \ell(\theta; \mathbf{X}_i)$$

BigData: expensive to evaluate all $\nabla \ell(\theta; X_i)$ at each iteration

• Replace $\nabla \mathcal{L}(\theta; \mathbf{X}_n)$ by

$$\nabla \hat{\mathcal{L}}^m(\theta; \mathbf{X}_m^*) = \frac{1}{m} \sum_{i=1}^m \nabla \ell(\theta; \mathbf{X}_j^*), \qquad m \ll n$$

 $\mathbf{X}_m^* = (X_1^*, \cdots, X_m^*)$ = subsample of \mathbf{X}_n (minibatch or bootstrap sample).

Stochastic optimization: $\min_{\theta} \mathcal{L}(\theta; \mathbf{X}_n), \mathbf{X}_n = (X_1, \cdots, X_n)$

 \bullet Gradient descent algorithm to compute x_k iteratively

$$\mathbf{x}_k = \mathbf{x}_{k-1} - \delta \nabla \mathcal{L}(\mathbf{x}_{k-1}; \mathbf{X}_n), \ \nabla \mathcal{L}(\theta; \mathbf{X}_n) = \frac{1}{n} \sum_{i=1}^n \nabla \ell(\theta; \mathbf{X}_i)$$

BigData: expensive to evaluate all $\nabla \ell(\theta; X_i)$ at each iteration

• Replace $\nabla \mathcal{L}(\theta; \mathbf{X}_n)$ by

$$\nabla \hat{\mathcal{L}}^m(\theta; \mathbf{X}_m^*) = \frac{1}{m} \sum_{j=1}^m \nabla \ell(\theta; X_j^*), \qquad m \ll n$$

 $\mathbf{X}_m^* = (X_1^*, \cdots, X_m^*)$ = subsample of \mathbf{X}_n (minibatch or bootstrap sample).

Stochastic gradient descent algorithm

$$\mathbf{x}_{k}^{*} = \mathbf{x}_{k-1}^{*} - \delta \nabla \hat{\mathcal{L}}^{m}(\mathbf{x}_{k-1}^{*}; \mathbf{X}_{m}^{*})$$

Stochastic optimization: $\min_{\theta} \mathcal{L}(\theta; \mathbf{X}_n), \mathbf{X}_n = (X_1, \cdots, X_n)$

Gradient descent algorithm to compute x_k iteratively

$$\mathbf{x}_k = \mathbf{x}_{k-1} - \delta \nabla \mathcal{L}(\mathbf{x}_{k-1}; \mathbf{X}_n), \ \nabla \mathcal{L}(\theta; \mathbf{X}_n) = \frac{1}{n} \sum_{i=1}^n \nabla \ell(\theta; \mathbf{X}_i)$$

BigData: expensive to evaluate all $\nabla \ell(\theta; X_i)$ at each iteration

• Replace $\nabla \mathcal{L}(\theta; \mathbf{X}_n)$ by

$$\nabla \hat{\mathcal{L}}^m(\theta; \mathbf{X}_m^*) = \frac{1}{m} \sum_{i=1}^m \nabla \ell(\theta; X_j^*), \qquad m \ll n$$

 $\mathbf{X}_m^* = (X_1^*, \cdots, X_m^*)$ = subsample of \mathbf{X}_n (minibatch or bootstrap sample).

Stochastic gradient descent algorithm

$$\mathbf{x}_{k}^{*} = \mathbf{x}_{k-1}^{*} - \delta \nabla \hat{\mathcal{L}}^{m}(\mathbf{x}_{k-1}^{*}; \mathbf{X}_{m}^{*})$$

Continuous curve X_t^* to approximate discrete $\{x_k^*: k \geq 0\}$

 X_t^* obeys stochastic differential equation.

Gradient Descent vs Stochastic Gradient Descent

Gradient Descent vs Stochastic Gradient Descent

Continuous curve model

Stochastic differential equation:

$$dX_t^* + \nabla g(X_t^*)dt + \sigma(X_t^*)dW_t = 0$$

 $W_t = Brownian motion$

For the accelerated case:

2nd order stochastic differential equation

Continuous curve model

Stochastic differential equation:

$$dX_t^* + \nabla g(X_t^*)dt + \sigma(X_t^*)dW_t = 0$$

 $W_t = Brownian motion$

For the accelerated case:

2nd order stochastic differential equation

and their asymptotic distribution as $m, n \to \infty$ via stochastic differential equations

Continuous curve model

Stochastic differential equation:

$$dX_t^* + \nabla g(X_t^*)dt + \sigma(X_t^*)dW_t = 0$$

 $W_t = Brownian motion$

For the accelerated case:

2nd order stochastic differential equation

and their asymptotic distribution as $m, n \to \infty$ via stochastic differential equations

Example
$$X_i = (U_i, V_i)$$
, $i = 1, \dots, n = 10000$
 $V_i = U_i \theta + \varepsilon_i$, $U_i \sim i.i.d.$ bivariate $N(0, \Sigma)$, $\varepsilon_i \sim i.i.d.$ $N(0, \tau^2)$
 $\ell(\theta; X_i) = (V_i - U_i \theta)^2$, $m = 200$, true $\theta = (0, 0)$.

Continuous curve model

Stochastic differential equation:

$$dX_t^* + \nabla g(X_t^*)dt + \sigma(X_t^*)dW_t = 0$$

 $W_t =$ Brownian motion

For the accelerated case:

2nd order stochastic differential equation

and their coumnts

and their asymptotic distribution as $m, n \to \infty$ via stochastic differential equations

Example
$$X_i = (U_i, V_i)$$
, $i = 1, \dots, n = 10000$
 $V_i = U_i \theta + \varepsilon_i$, $U_i \sim i.i.d$.bivariate $N(0, \Sigma)$, $\varepsilon_i \sim i.i.d$. $N(0, \tau^2)$
 $\ell(\theta; X_i) = (V_i - U_i \theta)^2$, $m = 200$, true $\theta = (0, 0)$.

Deep Learning

Boltzmann Machine (BM) on graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$

•

$$P(\mathbf{s}) = \frac{\exp[-E(\mathbf{s})]}{Z}, \quad Z = \sum_{\mathbf{s}} \exp[-E(\mathbf{s})]$$

Energy

$$E(\mathbf{s}) = -\sum_{(i,j)\in\mathcal{E}} W_{ij}s_is_j - \sum_{i\in\mathcal{V}} b_is_i, \quad \mathbf{s} = (s_1,\cdots,s_{|\mathcal{V}|}) \in \{-1,1\}^{|\mathcal{V}|}$$

Deep Learning

Boltzmann Machine (BM) on graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$

•

$$P(\mathbf{s}) = \frac{\exp[-E(\mathbf{s})]}{Z}, \quad Z = \sum_{\mathbf{s}} \exp[-E(\mathbf{s})]$$

Energy

$$E(\mathbf{s}) = -\sum_{(i,j)\in\mathcal{E}} W_{ij} s_i s_j - \sum_{i\in\mathcal{V}} b_i s_i, \quad \mathbf{s} = (s_1, \cdots, s_{|\mathcal{V}|}) \in \{-1, 1\}^{|\mathcal{V}|}$$

Take $\mathbf{s} = (\mathbf{v}, \mathbf{h})$

 $\mathbf{v} = (\mathbf{v_1}, \cdots, \mathbf{v_n})$: visible nodes (observed variables)

 $\mathbf{h} = (h_1, \dots, h_m)$: hidden nodes (latent variables).

Boltzmann distribution models data v:

$$P(\mathbf{v}) = \sum_{\mathbf{h}} P(\mathbf{v}, \mathbf{h})$$

◆ロト ◆回 ト ◆ 恵 ト ◆ 恵 ・ 夕 へ ○

Deep Learning

Boltzmann Machine (BM) on graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$

$$P(\mathbf{s}) = \frac{\exp[-E(\mathbf{s})]}{Z}, \quad Z = \sum_{\mathbf{s}} \exp[-E(\mathbf{s})]$$

Energy

$$E(\mathbf{s}) = -\sum_{(i,j)\in\mathcal{E}} W_{ij}s_is_j - \sum_{i\in\mathcal{V}} b_is_i, \quad \mathbf{s} = (s_1,\cdots,s_{|\mathcal{V}|}) \in \{-1,1\}^{|\mathcal{V}|}$$

Take $\mathbf{s} = (\mathbf{v}, \mathbf{h})$

 $\mathbf{v} = (\mathbf{v_1}, \cdots, \mathbf{v_n})$: visible nodes (observed variables)

 $\mathbf{h} = (h_1, \dots, h_m)$: hidden nodes (latent variables).

Boltzmann distribution models data v:

$$P(\mathbf{v}) = \sum_{\mathbf{h}} P(\mathbf{v}, \mathbf{h})$$

Learning

Use training data \mathbf{v} to learn model parameters W_{ij} & b_i .

Yazhen (at UW-Madison) 10 / 40

Restricted Boltzmann Machine (RBM)

Bipartite undirected graph $\mathcal G$

Connections between hidden layer and visible layer but not within each layer

Restricted Boltzmann Machine (RBM)

Bipartite undirected graph \mathcal{G}

Connections between hidden layer and visible layer but not within each layer

Model

Variables in visible layer:

$$\mathbf{v}=(v_1,\cdots,v_n),$$

Variables in hidden layer:

$$\mathbf{h} = (h_1, \cdots, h_m)$$

$$P(\mathbf{v}, \mathbf{h}) = \exp\{-E(\mathbf{v}, \mathbf{h})\}/Z$$

Restricted Boltzmann Machine (RBM)

Bipartite undirected graph \mathcal{G}

Connections between hidden layer and visible layer but not within each layer

Model

Variables in visible layer:

$$\mathbf{v}=(v_1,\cdots,v_n),$$

Variables in hidden layer:

$$\mathbf{h}=(h_1,\cdots,h_m)$$

$$P(\mathbf{v}, \mathbf{h}) = \exp\{-E(\mathbf{v}, \mathbf{h})\}/Z$$

$$E(\mathbf{v}, \mathbf{h}) = -\sum_{i=1}^{n} \sum_{j=1}^{m} w_{ij} v_{i} h_{j} - \sum_{i=1}^{n} b_{i} v_{i} - \sum_{j=1}^{m} c_{j} h_{j}$$

Deep Neural Network: Restricted Boltzmann Machine

Deep Neural Network: Restricted Boltzmann Machine

Conditional independence within each layer given the others

$$P(\boldsymbol{h}|\mathbf{v}) = \prod_{i=1}^{m} P(h_i|\mathbf{v}), \quad P(\mathbf{v}|\boldsymbol{h}) = \prod_{i=1}^{n} P(v_i|\boldsymbol{h})$$

Deep Neural Network: Restricted Boltzmann Machine

Conditional independence within each layer given the others

$$P(\boldsymbol{h}|\mathbf{v}) = \prod_{j=1}^{m} P(h_j|\mathbf{v}), \quad P(\mathbf{v}|\boldsymbol{h}) = \prod_{j=1}^{n} P(v_j|\boldsymbol{h})$$

Sigmoid activation function for forward and backward conditional probabilities: sigmoid(x) = $1/[1 + e^{-x}]$

$$P(h_j = 1 | \mathbf{v}) = \text{sigmoid} \left(\sum_{i=1}^n w_{ij} v_i + c_j \right)$$

$$P(v_i = 1 | \boldsymbol{h}) = \text{sigmoid} \left(\sum_{j=1}^n w_{ij} h_j + b_i \right)$$

Deep Learning

Gradient ascent/descent to compute model parameters w_{ij} , b_i and c_j .

Deep Learning

Gradient ascent/descent to compute model parameters w_{ij} , b_i and c_j .

Parameter updates with learning rate η

$$w_{ij}^{(t+1)} = w_{ij}^t + \eta \frac{\partial \log P}{\partial w_{ij}}$$

$$b_i^{(t+1)} = b_i^t + \eta \frac{\partial \log P}{\partial b_i}, \quad c_j^{(t+1)} = c_j^t + \eta \frac{\partial \log P}{\partial c_i}$$

Deep Learning

Gradient ascent/descent to compute model parameters w_{ij} , b_i and c_j .

Gradient

$$\frac{\partial \log P}{\partial w_{ij}} = \langle v_i h_j \rangle_{\text{data}} - \langle v_i h_j \rangle_{\text{model}}$$

$$\frac{\partial \log P}{\partial b_i} = \langle v_i \rangle_{\mbox{data}} - \langle v_i \rangle_{\mbox{model}}, \ \ \frac{\partial \log P}{\partial c_j} = \langle h_j \rangle_{\mbox{data}} - \langle h_j \rangle_{\mbox{model}}$$

• $\langle v_i h_j \rangle_{\mbox{data}}$: the clamped expectation with **v** fixed

Bottleneck:
$$\langle v_i h_j \rangle_{\text{model}} = \sum_{\mathbf{v}, \mathbf{h}} v_i h_j P(\mathbf{v}, \mathbf{h})$$

Parameter updates with learning rate η

$$w_{ij}^{(t+1)} = w_{ij}^t + \eta \frac{\partial \log P}{\partial w_{ij}}$$

$$b_i^{(t+1)} = b_i^t + \eta \frac{\partial \log P}{\partial b_i}, \quad c_j^{(t+1)} = c_j^t + \eta \frac{\partial \log P}{\partial c_i}$$

Markov Chain Monte Carlo (MCMC)

Metropolis-Hastings algorithm/Gibbs sampler

Sample from Boltzmann distribution

$$P(\mathbf{s}) = \frac{\exp[-H_{\textit{lsing}}(\mathbf{s})/T]}{Z_T}, Z_T = \sum_{\mathbf{s}} \exp\left[-\frac{H_{\textit{lsing}}(\mathbf{s})}{T}\right], T = \text{temperature}$$

Markov Chain Monte Carlo (MCMC)

Metropolis-Hastings algorithm/Gibbs sampler

Sample from Boltzmann distribution

$$P(\mathbf{s}) = \frac{\exp[-H_{lsing}(\mathbf{s})/T]}{Z_T}, Z_T = \sum_{\mathbf{s}} \exp\left[-\frac{H_{lsing}(\mathbf{s})}{T}\right], T = \text{temperature}$$

Simulated annealing: Thermal Fluctuation

Slowly lower the temperature to reduce the escape probability of trapping in local minima,

Annealing schedule :
$$T_i \propto \frac{1}{i+1}$$
 or $\frac{1}{\log(i+1)}$

Markov Chain Monte Carlo (MCMC)

Metropolis-Hastings algorithm/Gibbs sampler

Sample from Boltzmann distribution

$$P(\mathbf{s}) = \frac{\exp[-H_{lsing}(\mathbf{s})/T]}{Z_T}, Z_T = \sum_{\mathbf{s}} \exp\left[-\frac{H_{lsing}(\mathbf{s})}{T}\right], T = \text{temperature}$$

Simulated annealing: Thermal Fluctuation

Slowly lower the temperature to reduce the escape probability of trapping in local minima,

Annealing schedule :
$$T_i \propto \frac{1}{i+1}$$
 or $\frac{1}{\log(i+1)}$

BigData

Issues: not easy for parallel computing; very hard to scale-up!

Classical optimization: $Min\{H_{lsing}(\mathbf{s}): \mathbf{s} \in \{-1, 1\}^N\}$

Classical optimization: $Min\{H_{lsing}(\mathbf{s}): \mathbf{s} \in \{-1, 1\}^N\}$

Find a target quantum system with Hamiltonian H(1) whose

energies match $H_{lsing}(\mathbf{s})$: $H(1) = diag\{H_{lsing}(\mathbf{s}_1,) \cdots, H_{lsing}(\mathbf{s}_{2^N})\}.$

Classical optimization: $Min\{H_{lsing}(\mathbf{s}): \mathbf{s} \in \{-1, 1\}^N\}$

Find a target quantum system with Hamiltonian H(1) whose energies match $H_{lsing}(\mathbf{s})$: $H(1) = \text{diag}\{H_{lsing}(\mathbf{s}_1, \dots, H_{lsing}(\mathbf{s}_{2^N})\}$.

Create an initial quantum system with Hamiltonian H(0) whose lowest energy state is known and easy to prepare.

Classical optimization: $Min\{H_{lsing}(\mathbf{s}): \mathbf{s} \in \{-1, 1\}^N\}$

Find a target quantum system with Hamiltonian H(1) whose energies match $H_{lsing}(\mathbf{s})$: $H(1) = \text{diag}\{H_{lsing}(\mathbf{s}_1, \dots, H_{lsing}(\mathbf{s}_{2^N})\}$.

Create an initial quantum system with Hamiltonian H(0) whose lowest energy state is known and easy to prepare.

QA: Engineer H(0) in its lowest energy state and gradually move $H(0) \longrightarrow H(1)$

Spin glass in transverse field

$$H = A(t)H_X + B(t)H_{lsing}$$
, two parts non-commuting

Spin glass in transverse field

 $H = A(t)H_X + B(t)H_{Ising}$, two parts non-commuting

Path integral representation via Suzuki-Trotter expansion

 $H \approx H_{2+1} = \text{classical } (2+1) - \text{dimensional anisotropic Ising system}$

Spin glass in transverse field

 $H = A(t)H_X + B(t)H_{lsing}$, two parts non-commuting

Path integral representation via Suzuki-Trotter expansion

 $H \approx H_{2+1} = \text{classical (2+1)-dimensional anisotropic Ising system}$

(2+1)-dimensional system

Two directions: along the original 2-dimensional direction spins have Chimera graph couplings, and along the extra (imaginary-time) direction spins have uniform couplings

Spin glass in transverse field

 $H = A(t)H_X + B(t)H_{Ising}$, two parts non-commuting

Path integral representation via Suzuki-Trotter expansion

 $H \approx H_{2+1} = \text{classical (2+1)-dimensional anisotropic Ising system}$

(2+1)-dimensional system

Two directions: along the original 2-dimensional direction spins have Chimera graph couplings, and along the extra (imaginary-time) direction spins have uniform couplings

Quantum Monte Carlo

 H_{2+1} : a collection of 2-dimensional classical Ising systems, that can be simulated by MCMC with moves in both directions

Magnet *i* points in direction with angle θ_i w.r.t. \vec{z} -axis in the xz plane, an external magnetic field with intensity A(t) pointing in the \vec{x} -axis,

Hamiltonian, $J_{ij}=$ coupling of magnets θ_i and θ_j ,

$$H(t) = -A(t) \sum_{i=1}^{N} \sin \theta_i - B(t) \sum_{1 \le i < j \le N} J_{ij} \cos \theta_i \cos \theta_j$$

Magnet *i* points in direction with angle θ_i w.r.t. \vec{z} -axis in the xz plane, an external magnetic field with intensity A(t) pointing in the \vec{x} -axis,

Hamiltonian, $J_{ij} = \text{coupling of magnets } \theta_i \text{ and } \theta_j$,

$$H(t) = -A(t) \sum_{i=1}^{N} \sin \theta_i - B(t) \sum_{1 \le i < j \le N} J_{ij} \cos \theta_i \cos \theta_j$$

The model can be simulated by the Metropolis algorithm with temperature T=0.22, and initial condition $\theta_i=\pi/2$

Magnet *i* points in direction with angle θ_i w.r.t. \vec{z} -axis in the xz plane, an external magnetic field with intensity A(t) pointing in the \vec{x} -axis,

Hamiltonian, $J_{ij} = \text{coupling of magnets } \theta_i \text{ and } \theta_j$,

$$H(t) = -A(t) \sum_{i=1}^{N} \sin \theta_i - B(t) \sum_{1 \le i < j \le N} J_{ij} \cos \theta_i \cos \theta_j$$

The model can be simulated by the Metropolis algorithm with temperature T=0.22, and initial condition $\theta_i=\pi/2$

Interpretation: angle θ_i as state $|\uparrow\rangle$ (=+1) or state $|\downarrow\rangle$ (= -1) according to the sign of $\cos(\theta_i)$ (its projection on \vec{z} direction).

◆□▶◆□▶◆□▶◆□▶ □ り९℃

Magnet *i* points in direction with angle θ_i w.r.t. \vec{z} -axis in the xz plane, an external magnetic field with intensity A(t) pointing in the \vec{x} -axis,

Hamiltonian, $J_{ij} = \text{coupling of magnets } \theta_i \text{ and } \theta_j$,

$$H(t) = -A(t) \sum_{i=1}^{N} \sin \theta_i - B(t) \sum_{1 \le i < j \le N} J_{ij} \cos \theta_i \cos \theta_j$$

The model can be simulated by the Metropolis algorithm with temperature T=0.22, and initial condition $\theta_i=\pi/2$

Interpretation: angle θ_i as state $|\uparrow\rangle$ (=+1) or state $|\downarrow\rangle$ (= -1) according to the sign of $\cos(\theta_i)$ (its projection on \vec{z} direction).

Use the converted states to evaluate $H_{lsing}(\mathbf{s})$ and find its minimizer

DW Signal vs Background Noise

DW Signal vs Background Noise

Correlation of Ground State Success Probability Data

For the *r*-th instance, repeat *m* times of annealing, let \hat{p}_{0rm} be DW success frequency out of *m* repetitions and $\hat{q}_{\ell rm}$, $\ell = 1, 2, 3$, the success frequencies for SA, SQA & SSSV

For the r-th instance, repeat m times of annealing, let \hat{p}_{0rm} be DW success frequency out of m repetitions and $\hat{q}_{\ell rm}$, $\ell=1,2,3$, the success frequencies for SA, SQA & SSSV

$$H_{0r}: p_{0r\infty} = q_{\ell r\infty} \text{ vs } H_{ar}: p_{0r\infty} \neq q_{\ell r\infty}$$

$$T_{r\ell} = \frac{m(\hat{p}_r - \hat{q}_{\ell,r})^2}{\hat{p}_r(1 - \hat{p}_r) + \hat{q}_{\ell,r}(1 - \hat{q}_{\ell,r})}$$

For the *r*-th instance, repeat *m* times of annealing, let \hat{p}_{0rm} be DW success frequency out of *m* repetitions and $\hat{q}_{\ell rm}$, $\ell=1,2,3$, the success frequencies for SA, SQA & SSSV

$$H_{0r}: p_{0r\infty} = q_{\ell r\infty} \text{ vs } H_{ar}: p_{0r\infty} \neq q_{\ell r\infty}$$

$$T_{r\ell} = \frac{m(\hat{p}_r - \hat{q}_{\ell,r})^2}{\hat{p}_r(1 - \hat{p}_r) + \hat{q}_{\ell,r}(1 - \hat{q}_{\ell,r})}$$

$$T_{r\ell}^* = 2m \left[ext{arcsin} \left(\sqrt{\hat{p}_r}
ight) - ext{arcsin} \left(\sqrt{\hat{q}_{\ell,r}}
ight)
ight]^2$$

For the r-th instance, repeat m times of annealing, let \hat{p}_{0rm} be DW success frequency out of *m* repetitions and $\hat{q}_{\ell rm}$, $\ell = 1, 2, 3$, the success frequencies for SA, SQA & SSSV

$$H_{0r}: p_{0r\infty} = q_{\ell r\infty} \text{ vs } H_{ar}: p_{0r\infty} \neq q_{\ell r\infty}$$

$$T_{r\ell} = \frac{m(\hat{p}_r - \hat{q}_{\ell,r})^2}{\hat{p}_r(1 - \hat{p}_r) + \hat{q}_{\ell,r}(1 - \hat{q}_{\ell,r})}$$

$$T_{r\ell}^* = 2m \left[rcsin \left(\sqrt{\hat{p}_r}
ight) - rcsin \left(\sqrt{\hat{q}_{\ell,r}}
ight)
ight]^2$$

Asymptotic distribution under H_{0r}

As $m, n \to \infty$, if $\log n/m \to 0$, then

Yazhen (at UW-Madison)

$$T_{r\ell} \longrightarrow \chi_1^2, \quad T_{r\ell}^* \longrightarrow \chi_1^2 \quad \text{uniformly over } r = 1, \cdots, n$$

26 / 40

For the r-th instance, repeat m times of annealing, let \hat{p}_{0rm} be DW success frequency out of m repetitions and $\hat{q}_{\ell rm}$, $\ell=1,2,3$, the success frequencies for SA, SQA & SSSV

$$H_{0r}: p_{0r\infty} = q_{\ell r\infty} \text{ vs } H_{ar}: p_{0r\infty} \neq q_{\ell r\infty}$$

$$T_{r\ell} = \frac{m(\hat{p}_r - \hat{q}_{\ell,r})^2}{\hat{p}_r(1 - \hat{p}_r) + \hat{q}_{\ell,r}(1 - \hat{q}_{\ell,r})}$$

$$T_{r\ell}^* = 2m \left[ext{arcsin} \left(\sqrt{\hat{p}_r}
ight) - ext{arcsin} \left(\sqrt{\hat{q}_{\ell,r}}
ight)
ight]^2$$

Asymptotic distribution under H_{0r}

As $m, n \to \infty$, if $\log n/m \to 0$, then

$$T_{r\ell} \longrightarrow \chi_1^2, \quad T_{r\ell}^* \longrightarrow \chi_1^2 \quad \text{uniformly over } r = 1, \cdots, n$$

p-values & FDR

$$H_{0r}$$
 vs H_{ar} : p-value = $P(\chi_1^2 \ge T_{r\ell})$ p-value = $P(\chi_1^2 \ge T_{r\ell}^*)$

$$H_0: p_{0r\infty}=q_{\ell r\infty}$$
 for all $1\leq r\leq n$ vs $H_a: p_{0r\infty} \neq q_{\ell r\infty}$ for some r

$$H_0: p_{0r\infty} = q_{\ell r\infty} \text{ for all } 1 \le r \le n \text{ vs } H_a: p_{0r\infty} \ne q_{\ell r\infty} \text{ for some } r$$

$$U_\ell = (2n)^{-1/2} \sum_{r=1}^n (T_{r\ell} - n) \quad U_\ell^* = (2n)^{-1/2} \sum_{r=1}^n (T_{r\ell} - n)$$

27 / 40

$$H_0:
ho_{0r\infty}=q_{\ell r\infty}$$
 for all $1\leq r\leq n$ vs $H_a:
ho_{0r\infty}
eq q_{\ell r\infty}$ for some r

$$U_{\ell} = (2n)^{-1/2} \sum_{r=1}^{n} (T_{r\ell} - n) \quad U_{\ell}^* = (2n)^{-1/2} \sum_{r=1}^{n} (T_{r\ell} - n)$$

Asymptotic distribution under H_0 as $m, n \to \infty$

$$U_\ell
ightarrow N(0,1) \quad U_\ell^*
ightarrow N(0,1)$$

Conditions

- (1) $\sqrt{n}/m \rightarrow 0$.
- (2) $p_{0r\infty} = q_{\ell r\infty}$ =true success probability for method ℓ with the r-th instance are bounded away from 0 and 1.

$$H_0:
ho_{0r\infty}=q_{\ell r\infty}$$
 for all $1\leq r\leq n$ vs $H_a:
ho_{0r\infty}
eq q_{\ell r\infty}$ for some r

$$U_{\ell} = (2n)^{-1/2} \sum_{r=1}^{n} (T_{r\ell} - n) \quad U_{\ell}^* = (2n)^{-1/2} \sum_{r=1}^{n} (T_{r\ell} - n)$$

Asymptotic distribution under H_0 as $m, n \to \infty$

$$U_\ell
ightarrow N(0,1) \quad U_\ell^*
ightarrow N(0,1)$$

p-value =
$$2[1 - \Phi(|U_{\ell}|)]$$
 p-value = $2[1 - \Phi(|U_{\ell}^*|)]$

Conditions

- (1) $\sqrt{n}/m \rightarrow 0$.
- (2) $p_{0r\infty} = q_{\ell r\infty}$ =true success probability for method ℓ with the r-th instance are bounded away from 0 and 1.

4 D > 4 P > 4 E > 4 E > E 9990

Multiple Tests: FDR

Multiple Tests: FDR

p-values

Multiple Tests: FDR

p-values

FDR

q-value = essentially zero

SQA vs DW

p-values = 0

SQA vs DW	SSSV vs DW
p-values = 0	p-values = 0

	SA vs DW p-values = 0
SQA vs DW	SSSV vs DW
p-values = 0	p-values = 0

Goodness-of-fit-test

Reject null hypothesis	SA vs DW
all p-values $\leq 3.87 \times 10^{-6}$	p-values = 0
	,
SQA vs DW	SSSV vs DW

Goodness-of-fit-test

Reject null hypothesis	SA vs DW
all p-values $\leq 3.87 \times 10^{-6}$	p-values = 0
SQA vs DW	SSSV vs DW

Conclusion: Overwhelming rejection

Overwhelming evidence to reject that DW is statistically consistent with

SQA or SSSV in terms of ground state success probability

Histogram of Ground State Success Probability Data

Yazhen (at UW-Madison) 30 / 40

SA Histograms for different annealing times

Yazhen (at UW-Madison) 31 / 40

SQA Histograms

SQA Histograms

Yazhen (at UW-Madison) 32 / 40

SSSV Histograms

SSSV Histograms

DIP Test for Shape Patterns

$$DIP(F_n) = \max_{0 \le p \le 1} |F_n(p) - \hat{F}_n(p)|$$

$$F_n = \text{empirical DF, } \hat{F}_n = \text{DF estimator under unimodality or U-shape}$$

Under uniform null (asymptotic least favorable) distribution, as $n \to \infty$, $\sqrt{n}DIP(F_n) \to DIP(B)$, B(t) = Brownian bridge on [0, 1]

Yazhen (at UW-Madison) 34 / 40

DIP Test for Shape Patterns

$$DIP(F_n) = \max_{0 \le p \le 1} |F_n(p) - \hat{F}_n(p)|$$

 F_n =empirical DF, \hat{F}_n = DF estimator under unimodality or U-shape Under uniform null (asymptotic least favorable) distribution, as $n \to \infty$, $\sqrt{nDIP}(F_n) \to DIP(B)$, B(t) = Brownian bridge on [0, 1]

Unimodality (including monotone)

DW: no SA: yes

SQA: no SSSV: no

DIP Test for Shape Patterns

$$DIP(F_n) = \max_{0$$

 F_n =empirical DF, \hat{F}_n = DF estimator under unimodality or U-shape Under uniform null (asymptotic least favorable) distribution, as $n \to \infty$, $\sqrt{nDIP}(F_n) \to DIP(B)$, B(t) = Brownian bridge on [0, 1]

Unimodality (including monotone)

DW: no SA: yes

SQA: no SSSV: no

U-shape

DW: no SA: no

SQA: yes SSSV: yes

Yazhen (at UW-Madison) 34 / 40

Histogram of Success Probability

Yazhen (at UW-Madison) 35 / 40

Histogram of Success Probability

Covariates

Energy gap & Hamming distance between ground state and 1st excited state

< ロ > < 回 > < 巨 > < 巨 > < 巨 > へ 回

Yazhen (at UW-Madison) 37 / 40

Covariates

Energy gap & Hamming distance between ground state and 1st excited state

Covariates

Energy gap & Hamming distance between ground state and 1st excited state

Concluding Remarks

Both inference and computing are inportant for big data.

Concluding Remarks

Both inference and computing are inportant for big data.

Interface

- Computing for conducting statistical inference; and statistics for analyzing computational algorithms.
- Statistics for quantum technology (e.g. quantum computing & tomography), and quantum computing for statistical computing and machine learning.

Yazhen (at UW-Madison) 39 /